Öppna denna publikation i ny flik eller fönster >>Visa övriga...
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Abstract [en]
Aphanizomenon, together with Dolichospermum and Nodularia, constitute the major genera of bloom forming filamentous nitrogen fixing cyanobacteria in the Baltic Sea. Like the other genera, Aphanizomenon displays summer blooms that are highly variable in magnitude and duration but unlike the others it is considered a holoplanktonic species. Still, the molecular mechanisms enabling Aphanizomenon year-round presence in surface waters are currently unknown. Here we combine analysis of Aphanizomenon population dynamics at the Linnaeus Microbial Observatory (LMO) station in the Baltic Proper over nine years (2011-2019) with associated gene expression patterns during 2016-2017 to identify annual abundance, and metabolic and life cycle strategies. Aphanizomenon biomass showed large annual variability and a consistent biovolume peak in summer, with bloom intensity ranging from 78-1334 mm3 m-3. 16S rRNA gene amplicon sequence data showed that one Aphanizomenon amplicon sequence variant (ASV) dominated, and its relative abundance correlated with biovolume measurements. Metatranscriptomic reads that mapped to an Aphanizomenon metagenome- assembled genome (MAG) revealed annually repeating gene expression patterns, resulting in distinct gene expression profiles during different meteorological seasons. Genes encoding proteins involved in several important functional classes, e.g. carbon fixation, photosynthesis, and associated photopigments showed seasonal variation, but were detected year round. Other genes, particularly those involved in nitrogen fixation, were highly expressed in summer, while absent in winter. Vitamin metabolism and phosphorus scavenging genes were preferentially expressed during the colder periods of the annual cycle. Together, these data show that Aphanizomenon regulates the molecular machinery on the seasonal scale, providing context to the observed dynamics of Aphanizomenon in the Baltic Proper and a foundation for understanding the ecology of these cyanobacteria.
Nationell ämneskategori
Ekologi
Forskningsämne
Ekologi, Akvatisk ekologi; Ekologi, Mikrobiologi
Identifikatorer
urn:nbn:se:lnu:diva-129189 (URN)
2024-05-072024-05-072024-08-22Bibliografiskt granskad