lnu.sePublications
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Mixotrophic Microalgal Production In The Nordic Region: Enhancing nutrient removal from industrial waste streams and generating valuable biomass
Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. (MPEA)ORCID iD: 0000-0001-5615-7064
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Sustainable development
SDG 6: Ensure availability and sustainable management of water and sanitation for all
Alternative title
Mixotrof Produktion Av Mikroalger I Norden : För att öka återvinning av näringsämnen från industriella avloppsströmmar och generera värdefull biomassa (Swedish)
Abstract [en]

Microalgal solutions use microalgae, photosynthetic unicellular microorganisms (2-50 μm), to efficiently recover nutrients and CO2 into a valuable algal biomass, containing lipids, fatty acids, proteins, amino acids, carbohydrates, vitamins, and more. Autotrophic mode, the most traditional microalgal cultivation method, relies entirely on photosynthesis, resulting in low biomass productivity in low light seasons, such as during Nordic autumns and winters. Mixotrophic mode, that supports both photosynthesis and heterotrophy using organic carbon (OC) for growth, yields higher biomass productivity and nutrient recovery.Whey permeate and cheese whey, dairy processing wastewaters, have been tested as OC sources for mixotrophic algal production in small-scale controlled laboratory conditions. This thesis investigates the potential for using these wastewaters as sources of phosphorus and OC, in combination with landfill leachate or fluegas condensate water as a nitrogen source, for sustainable mixotrophic algal cultivations under outdoor Nordic conditions. Monocultures and polycultures of local green algae were cultivated in mixotrophic mode on glucose, whey permeate or cheese whey and autotrophic mode in pilot-scale raceway ponds during the spring and autumn in southern Sweden. The coexistence of algae and bacteria, the algal gene expression, and the metabolite profile of algal biomass in response to mixotrophic mode were studied to optimize the operations and suggest suitable applications of mixotrophic algal biomass.The results demonstrated enhanced algal productions in mixotrophic mode under both high and low light conditions, with higher algal growth rates, productivity, and nutrient removal and recovery rates compared to autotrophic mode. Mixotrophic mode offers the potential for year-round algal cultivations in Nordic conditions. Additionally, cheese whey mitigated night algal biomass loss when added at sufficient concentrations.The eukaryotic and prokaryotic composition of polycultures varied more in mixotrophic mode than autotrophic mode. In the polycultures, most enzymes involved in carbon metabolism were upregulated, while those related to photosynthesis were downregulated in mixotrophic mode on glucose compared to autotrophic mode. Mixotrophic mode did not affect the biochemical composition in polycultures, but resulted in higher carbohydrate, and lower protein and lipid content in monocultures. Metabolite profiles of polycultures and monocultures were species-specific and differed between cultivation modes, favoring carbohydrate accumulation in mixotrophic mode. Therefore, the selection of algal species and cultivation mode is crucial for specific applications of algal biomass and when targeting specific metabolites.

Abstract [sv]

Odling av mikroalger, fotosyntetiska encelliga mikroorganismer (2-50 µm), kan användas för att effektivt återvinna näringsämnen och koldioxid, CO2 till en värdefull algbiomassa som innehåller lipider, fettsyror, proteiner, aminosyror, kolhydrater, vitaminer och mycket mer. Autotrof odling, den mest traditionella metoden för odling av mikroalger, förlitar sig helt på fotosyntes, vilket resulterar i låg produktivitet av biomassa under perioder med låg ljusintensitet, som under nordiska höstar och vintrar. Mixotrof odling, som kombinerar fotosyntes och heterotrofi genom att använda organiskt kol för tillväxt, ger högre produktivitet av biomassa och näringsåtervinning.Vasslepermeat och ostvassle, två avloppsvatten från osttillverkning, har tidigare testats som organiska kolkällor för mixotrofisk algproduktion i småskaliga kontrollerade laboratorieförhållanden. Denna avhandling undersöker potentialen för att använda dessa avloppsvatten som källor av fosfor och organiskt kol, i kombination med lakvatten från deponi eller kondensatsvatten från industriell rökgas som kvävekälla, för hållbar mixotrofisk algodling under utomhusförhållanden i Norden. Monokulturer och polykulturer av lokala grönalger odlades som mixotrofiskt på glukos, vasslepermeat eller ostvassle, och autotrofiskt i odlingsdammar i pilotskala under vår och höst i södra Sverige. Hur alger och bakterier samexisterar, algens genuttryck och metabolitprofilen hos algbiomassan studerades för att för att optimera driften av mixotrof odling och föreslå lämpliga tillämpningar av mixotrof algbiomassa.Resultaten visade en högre produktion av mikroalger i mixotrof odling under både höga och låga ljusförhållanden, med högre algtillväxthastighet, produktivitet och återvinning av näringsämnen, jämfört med autotrof odling. Mixotrof odling möjliggör potential algodling för året runt i nordiska förhållanden. Dessutom minskade ostvassle förlusten av biomassa nattetid, när det tillsattes i tillräcklig höga koncentrationer.Den eukaryota och prokaryota artsammansättningen i polykulturer varierade mer i mixotrof odling än i autotrof. I mixotrofiska polykulturer uppreglerades de flesta enzymer som är involverade i kolmetabolism, medan de som är relaterade till fotosyntes nedreglerades jämfört med autotrofisk odling. Mixotrof odling påverkade inte den biokemiska sammansättningen på biomassan i polykulturer, men resulterade i högre kolhydrat- och lägre protein- och lipidinnehåll i monokulturer. Metabolitprofilerna för biomassa från polykulturer och monokulturer var artspecifika och skilde sig mellan odlingsmetoder, vilket ökade innehållet av kolhydrater i mixotrof odling. Därför är valet av algarter och odlingssätt avgörande för specifika tillämpningar av algbiomassa och när man riktar in sig på specifika metaboliter.

Place, publisher, year, edition, pages
Växjö: Linnaeus University Press, 2025. , p. 59
Series
Linnaeus University Dissertations ; 572/2025
Series
l
Keywords [en]
mixotrophic microalgal cultivation, whey permeate, cheese whey, nutrient removal, nutrient recovery, algal biomass, metabolite profile
Keywords [sv]
mixotrofisk mikroalgodling, vasslepermeat, ostvassle, avlägsnande av näringsämnen, återvinning av näringsämnen, algbiomassa, metabolitprofil
National Category
Ecology
Research subject
Ecology, Aquatic Ecology; Natural Science, Ecology
Identifiers
URN: urn:nbn:se:lnu:diva-138227DOI: 10.15626/LUD.572.2025ISBN: 978-91-8082-302-9 (print)ISBN: 978-91-8082-303-6 (electronic)OAI: oai:DiVA.org:lnu-138227DiVA, id: diva2:1955396
Public defence
2025-05-22, Fullriggaren, Hus Magna, Kalmar, 09:00 (English)
Opponent
Supervisors
Available from: 2025-04-30 Created: 2025-04-30 Last updated: 2025-04-30Bibliographically approved
List of papers
1. Whey permeate as a phosphorus source for algal cultivation
Open this publication in new window or tab >>Whey permeate as a phosphorus source for algal cultivation
2023 (English)In: Water environment research, ISSN 1061-4303, E-ISSN 1554-7531, Vol. 95, no 4, article id e10865Article in journal (Refereed) Published
Abstract [en]

Microalgal cultivation for biodiesel and feed requires recycled nutrient resources for a sustainable long-term operation. Whey permeate (WP) from dairy processing contains high organic load (lactose, oils, and proteins) and nitrogen (resources tested for microalgal cultivation) and organic phosphorus (P) that has not yet been tested as a P source for microalgal cultivation. We explored the potential of green algae strains (brackish) and polyculture (freshwater) in exploiting P from WP added to a medium based on either seawater (7 psu) or landfill leachate. Both strains showed a capacity of using organic P in WP with equal growth rates (0.94-1.12 d(-1)) compared with chemical phosphate treatments (0.88-1.07 d(-1)). The polyculture had comparable growth rate (0.25-0.57 d(-1)) and biomass yield (152.1-357.5 mg L-1) and similar or higher nutrient removal rate in the leachate-WP medium (1.3-6.4 mg L-1 day(-1) nitrogen, 0.2-1.1 mg L-1 day(-1) P) compared with the leachate-chemical phosphate medium (1.2-4.7 mg L-1 day(-1) nitrogen, 0.3-1.4 mg L-1 day(-1) P). This study showed that WP is a suitable P source for microalgal cultivation over a range of salinities. To date, this is the first study demonstrating that raw WP can replace mineral P fertilizer for algal cultivation. Practitioners PointsWhey permeate is a comparable phosphorus source to standard fertilizers used in algal cultivation.Green algae removed phosphorus effectively from whey permeate.Microalgal cultivation is a good approach for treatment of whey permeate in combination with a nitrogen-rich wastewater.

Place, publisher, year, edition, pages
John Wiley & Sons, 2023
Keywords
landfill leachate, microalgal cultivation, nutrient recovery, phosphorus, whey permeate
National Category
Ecology Fish and Aquacultural Science
Research subject
Ecology, Aquatic Ecology
Identifiers
urn:nbn:se:lnu:diva-120950 (URN)10.1002/wer.10865 (DOI)000971488300001 ()37032530 (PubMedID)2-s2.0-85153750803 (Scopus ID)
Available from: 2023-05-26 Created: 2023-05-26 Last updated: 2025-04-30Bibliographically approved
2. Microalgal production and nutrient recovery under mixotrophic mode using cheese whey permeate
Open this publication in new window or tab >>Microalgal production and nutrient recovery under mixotrophic mode using cheese whey permeate
2024 (English)In: Bioresource Technology, ISSN 0960-8524, E-ISSN 1873-2976, Vol. 410, article id 131250Article in journal (Refereed) Published
Abstract [en]

Mixotrophic microalgal solutions are efficient nutrient recovery methods, with potential to prolong the cultivation seasons in temperate climates. To improve operation sustainability, the study used landfill leachate for nitrogen source and whey permeate for phosphorus and organic carbon. A non-axenic polyculture, dominated by green algae, was cultivated in mixotrophic mode on glucose or whey permeate compared to a photoautotrophic control in outdoor pilot-scaled raceway ponds during Nordic spring and autumn. The whey permeate treatment had the highest algal growth rate and productivity (0.48 d(-1), 183.8 mg L-1 d(-1)), nutrient removal (total nitrogen: 21.71 mg L-1 d(-1), total phosphorus: 3.05 mg L-1 d(-1)) and recovery rate (carbon: 85.19 mg L-1 d(-1), nitrogen: 17.01 mg L-1 d(-1), phosphorus: 2.58 mg L-1 d(-1)). When grown in whey permeate, algal cultures demonstrated consistent productivity and biochemical composition in high (spring) and low light conditions (autumn), suggesting the feasibility of year-round production in Nordic conditions.

Place, publisher, year, edition, pages
Elsevier, 2024
Keywords
Pilot-scaled cultivation, Nutrient removal, Wastewater treatment, Dairy water, Leachate
National Category
Bioprocess Technology
Research subject
Ecology, Aquatic Ecology; Ecology, Microbiology
Identifiers
urn:nbn:se:lnu:diva-132653 (URN)10.1016/j.biortech.2024.131250 (DOI)001312227100001 ()39127358 (PubMedID)2-s2.0-85201575166 (Scopus ID)
Available from: 2024-09-20 Created: 2024-09-20 Last updated: 2025-04-30Bibliographically approved
3. Differences in phytoplankton population vulnerability in response to chemical activity of mixtures
Open this publication in new window or tab >>Differences in phytoplankton population vulnerability in response to chemical activity of mixtures
Show others...
2024 (English)In: Environmental Science: Processes & Impacts, ISSN 2050-7887, E-ISSN 2050-7895, Vol. 26, no 11, p. 2062-2075Article in journal (Refereed) Published
Abstract [en]

Hydrophobic organic contaminants (HOCs) affect phytoplankton at cellular to population levels, ultimately impacting communities and ecosystems. Baseline toxicants, such as some HOCs, predominantly partition to biological membranes and storage lipids. Predicting their toxic effects on phytoplankton populations therefore requires consideration beyond cell uptake and diffusion. Functional traits like lipid content and profile can offer insights into the diverse responses of phytoplankton populations exposed to HOCs. Our study investigated the vulnerability of five phytoplankton species populations to varying chemical activities of a mixture of polycyclic aromatic hydrocarbons (PAHs). Population vulnerability was assessed based on intrinsic sensitivities (toxicokinetic and toxicodynamic), and demography. Despite similar chemical activities in biota within the exposed algae, effects varied significantly. According to the chemical activity causing 50% of the growth inhibition (Ea50), we found that the diatom Phaeodactylum tricornutum (Ea50 = 0.203) was the least affected by the chemical exposure and was also a species with low lipid content. In contrast, Prymnesium parvum (Ea50 = 0.072) and Rhodomonas salina (Ea50 = 0.08), both with high lipid content and high diversity of fatty acids in non-exposed samples, were more vulnerable to the chemical mixture. Moreover, the species P. parvum, P. tricornutum, and Nannochloris sp., displayed increased lipid production, evidenced as 5-10% increase in lipid fluorescence, after exposure to the chemical mixture. This lipid increase has the potential to alter the intrinsic sensitivity of the populations because storage lipids facilitate membrane repair, reconstitution and may, in the short-term, dilute contaminants within cells. Our study integrated principles of thermodynamics through the assessment of membrane saturation (i.e. chemical activity), and a lipid trait-based assessment to elucidate the differences in population vulnerability among phytoplankton species exposed to HOC mixtures. A chemical mixture caused diverse responses across five phytoplankton species. Analysis of lipid profiles and changes in neutral lipid content enhanced our understanding of the vulnerability of phytoplankton populations to chemical pollution.

Place, publisher, year, edition, pages
Royal Society of Chemistry, 2024
National Category
Ecology
Research subject
Ecology, Aquatic Ecology
Identifiers
urn:nbn:se:lnu:diva-133139 (URN)10.1039/d4em00249k (DOI)001330652000001 ()39399985 (PubMedID)2-s2.0-85206469367 (Scopus ID)
Available from: 2024-10-28 Created: 2024-10-28 Last updated: 2025-04-30Bibliographically approved

Open Access in DiVA

PhD_thesis_algal_cultivation_wastewater(8976 kB)30 downloads
File information
File name FULLTEXT01.pdfFile size 8976 kBChecksum SHA-512
1a313db07d42a60c2b4324f0cc1a6dedd440f95e573dcd0a1cca3a2da2d8702e6a03c20cdb5e918e114ea4f5060b8c7d7ced6bf72930ce9503c8860ed5aca40e
Type fulltextMimetype application/pdf

Other links

Publisher's full textBuy Book (SEK 400 + VAT and postage) lnupress@lnu.se

Search in DiVA

By author/editor
Nham, Quyen
By organisation
Department of Biology and Environmental Science
Ecology

Search outside of DiVA

GoogleGoogle Scholar
Total: 31 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 906 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf